心率传感器的使用讲解

视频讲解

心率传感器的使用,重要的是要获取到心率值,本篇文章将介绍一种采样数据处理算法——动态阈值算法,来获取心率值。

心率传感器的使用讲解

IBI和BPM

心率,指的是一分钟内的心跳次数,得到心率最笨的方法就是计时一分钟后数有多少次脉搏。但这样的话每次测心率都要等上个一分钟才有一次结果,效率极低。另外一种方法是,测量相邻两次脉搏的时间间隔,再用一分钟除以这个间隔得出心率。这样的好处是可以实时计算脉搏,效率高。

IBI: 相邻两次脉搏的时间间隔,单位:s。

BPM:心率,一分钟内的心跳次数。即BPM = 6000 / IBI

心率传感器的使用讲解

例如,在这张心率传感器输出信号的波形图中,可以计算出,两次波峰之间的时间为:0.685s,心率值为:60/0.685 = 87。

从网上找来的 arduino 开源算法复杂的一匹,看了一遍感觉一头雾水(反正我暂时没看懂)。由上面的分析可以得出,我们的最终目的就是要求出 IBI 的值,并通过 IBI 计算出实时心率。既然知道原理了那就自己来把算法实现吧。
有兴趣研究官方算法的朋友,可以下载:PulseSensor资料.rar

核心操作 —— 识别一个脉搏信号

无论是采用计数法还是计时法,只有能识别出一个脉搏,才能数出一分钟内脉搏数或者计算两个相邻脉搏之间的时间间隔。那怎么从采集的电压波形数据判断是不是一个有效的脉搏呢?

显然,可以通过检测波峰来识别脉搏。最简单粗暴的方法是设定一个阈值,当读取到的信号值大于此阈值时便认为检测一个脉搏。似乎用一个 if 语句就轻轻松松解决。但,事情真的有那么简单么?

其实这里存在两个问题。

问题一:阈值的选取

作为判断的参考标尺,阈值该选多大?10?100?还是1000?我们不得而知,因为波形的电压范围是不确定的,振幅有大有小并且会改变,根本不能用一个写死的值去判断。就像下面这张图一样:

心率传感器的使用讲解

可以看出,两个形状相同波形的检测结果截然不同 —— 同样是波峰,在不同振幅的波形中与阈值比较的结果存在差异。实际情况正是如此:传感器输出波形的振幅是在不断随机变化的,想用一个固定的值去判定波峰是不现实的。

既然固定阈值的方法不可取,那自然想到改变阈值 —— 根据信号振幅调整阈值,以适应不同信号的波峰检测。通过对一个周期内的信号多次采样,得出信号的最高与最低电压值,由此算出阈值,再用这个阈值对采集的电压值进行判定,考虑是否为波峰。也就是说电压信号的处理分两步,首先动态计算出参考阈值,然后用用阈值对信号判定、识别一个波峰。

心率传感器的使用讲解

问题二:特征点识别

上面得出的是一段有效波形,而计算 IBI 只需要一个点。需要从一段有效信号上选取一个点,这里暂且把它称为特征点,这个特征点代表了一个有效脉搏,只要能识别到这个特征点,就能在一个脉搏到来时触发任何动作。

通过记录相邻两个特征点的时间并求差值,计算 IBI 便水到渠成。那这个特征点应该取在哪个位置呢,从官网算法说明可以看出,官方开源 arduino 代码的 v1.1 版本是选取信号上升到振幅的一半作为特征点,我们可以捕获这个特征点作为一个有效脉搏的标志,然后计算 IBI。

心率传感器的使用讲解

算法整体框架与代码实现

分析得出算法的整体框架如下:

  • 缓存一个波形周期内的多次采样值,求出最大最小值,计算出振幅中间值作为信号判定阈值
  • 通过把当前采样值和上一采样值与阈值作比较,寻找到「信号上升到振幅中间位置」的特征点,记录当前时间
  • 寻找下一个特征点并记录时间,算出两个点的时间差值,即相邻两次脉搏的时间间隔 IBI
  • 由 IBI 计算心率值 BPM

代码如下,程序中使用一个 50 长度的数组进行采样数据缓存,在主函数 while (1) 中以 20ms 的周期不断执行采样、数据处理,其中的条件语句 if (PRE_PULSE == FALSE && PULSE == TRUE) 就表示找到了特征点、识别出一次有效脉搏,串口输出心率计算结果。

int main(void)
{
	int i;
	LED_Init();
    delay_init();	    	 //延时函数初始化
    UART1_Config(115200);	 	//串口初始化为9600
    ADC1_Init();
    while(1)
    {
        preReadData = readData;	        // 保存前一次值
//        readData = GetPulseSensorValue();		// 读取AD转换值
        readData = 4095 - ADC_ConvertedValue;		// 读取AD转换值

        if((readData - preReadData) < filter)     // 滤除突变噪声信号干扰
            data[idx++] = readData;	// 填充缓存数组

        if(idx >= DATA_SIZE)
        {
            idx = 0;	// 数组填满,从头再填

            // 通过缓存数组获取脉冲信号的波峰、波谷值,并计算中间值作为判定参考阈值
            max = Get_Array_Max(data, DATA_SIZE);
            min = Get_Array_Min(data, DATA_SIZE);
            mid = (max + min) / 2;
            filter = (max - min) / 2;
        }

        PRE_PULSE = PULSE;	// 保存当前脉冲状态
        PULSE = (readData > mid) ? TRUE : FALSE;  // 采样值大于中间值为有效脉冲

        if(PRE_PULSE == FALSE && PULSE == TRUE)   // 寻找到“信号上升到振幅中间位置”的特征点,检测到一次有效脉搏
        {
            pulseCount++;
            pulseCount %= 2;

            if(pulseCount == 1) // 两次脉搏的第一次
            {
                firstTimeCount = timeCount;   // 记录第一次脉搏时间
            }
            if(pulseCount == 0)  // 两次脉搏的第二次
            {
                secondTimeCount = timeCount;  // 记录第二次脉搏时间
                timeCount = 0;

                if((secondTimeCount > firstTimeCount))
                {
                    IBI = (secondTimeCount - firstTimeCount) * SAMPLE_PERIOD;	// 计算相邻两次脉搏的时间,得到 IBI
                    BPM = 60000 / IBI;  // 通过 IBI 得到心率值 BPM
                    if(BPM > 200)     //限制BPM最高显示值
                        BPM = 200;
                    if(BPM < 30)     //限制BPM最低显示值
                        BPM = 30;
                }
            }
//			printf("B%d\r\n", BPM);
			printf("SIG = %d IBI = %d, BMP = %d\r\n\r\n", readData, IBI, BPM);
        }
        SIG = readData;
//        printf("S%d\r\n", SIG);  // 上位机S数据发送
        timeCount++;  // 时间计数累加
        delay_ms(SAMPLE_PERIOD);  // 延时再进行下一周期采样
		if(i++ >= 50)
		{
			LED = !LED;
			i = 0;
		}
	}
}

将传感器正面轻按在食指上,单片机在每检测到一个脉搏时打印心率值 BPM 和相邻两次脉搏的时间间隔 IBI,实测结果还算稳定。

心率传感器的使用讲解

注意事项:

  • 避免手指触碰传感器背面
  • 传感器与手指之间不要施加过大压力,否则会阻碍血液流动而读不到脉搏信号
  • 传感器与手指之间的接触要保持稳定,按压力度的轻微变化都会影响电压值

要获取到稳定的数据,可以胶布缠一下:

心率传感器的使用讲解

另外这种传感器还可以夹在耳垂下面:

心率传感器的使用讲解

总结

与许多可穿戴设备的心率传感器相比, PulseSensor 还存在很大差距,而自己写程序也仅仅是达到「勉强可用」的程度,输出数据偶尔还是会有大波动。代码也还有许多可改进的地方(比如将 20ms 的数据采样处理用定时器中断实现)。传感器采集到数据只是前提,对数据的处理才是一切应用的核心,不断地调整参数、改良算法也是整个过程中最有趣的部分。

 

下载权限
查看
  • 免费下载
    评论并刷新后下载
    登录后下载
  • {{attr.name}}:
您当前的等级为
登录后免费下载登录 小黑屋反思中,不准下载! 评论后刷新页面下载评论 支付以后下载 请先登录 您今天的下载次数(次)用完了,请明天再来 支付积分以后下载立即支付 支付以后下载立即支付 您当前的用户组不允许下载升级会员
您已获得下载权限 您可以每天下载资源次,今日剩余
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索